Subthreshold cascade production in heavy ion collisions

L. Feng, L.W. Chen,¹ C.M. Ko, and S.H. Lee²

¹INPAC, Department of Physics and Shanghai Key Laboratory for Particle Physics and Cosmology, Shanghai Jiao Tong University, Shanghai 200240, China ²Institute of Physics and Applied Physics, Yonsei University, Seoul 120-749, Korea

We have calculated the cross sections for the reaction $YY \rightarrow N\Xi$ ($Y = \Lambda, \Sigma$) based on a gauged SU(3)-invariant hadronic Lagrangian in the Born approximation [1] and found that these cross sections, given in the left window of Fig. 1, are almost four times the cross sections for the reaction $KY \rightarrow \pi\Xi$ that was considered in previous studies [2]. We then used these cross sections to study Ξ production in ⁴⁰Ar+KCl collisions at the subthreshold energy of 1.76 AGeV within the framework of a relativistic transport model that includes explicitly the nucleon, delta, pion, and perturbatively the kaon, antikaon, hyperons, and Ξ [3]. We found that the reaction $YY \rightarrow N\Xi$ would enhance the abundance by a factor of about 16 compared to that from the reaction $KY \rightarrow \pi\Xi$ [4] as shown in the right window of Fig. 1, resulting in an abundance ratio $\Xi^{-/}(\Lambda + \Sigma^0) = 3.38 \times 10^{-3}$ that is essentially consistent with that measured by the HADES Collaboration at GSI [5]. Our study has thus helped in resolving one of the puzzles in particle production from heavy ion collisions at subthreshold energies.

FIG. 1. Left window: Cross sections for (a) $\Lambda\Lambda \rightarrow N\Xi$, (b) $\Lambda\Sigma \rightarrow N\Xi$, (c) $\Sigma\Sigma \rightarrow N\Xi$, (d) $N\Xi \rightarrow \Lambda\Lambda$, (e) $N\Xi \rightarrow \Lambda\Sigma$, and (f) $N\Xi \rightarrow \Sigma\Sigma$ as functions of the center-of-mass energy from the Born approximation with cutoff parameters $\Lambda = 0.5$ GeV (dashed lines), $\Lambda = 0.7$ GeV (solid lines), and $\Lambda = 1$ GeV (dotted lines). Right window: Time evolutions of (a) central baryon density (right scale) and the abundances (left scales) of π and Δ , (b) K, Λ , Σ , and antikaon, and (c) Ξ produced from different reactions.

- [1] L. Feng, L.W. Chen, C.M. Ko, and S.H. Lee, Phys. Rev. C (in press).
- [2] C.H. Li and C.M. Ko, Nucl. Phys. A712, 110 (2002).
- [3] C.M. Ko and G.Q. Li, J. Phys. G 22, 1673 (1996).
- [4] L.W. Chen, C.M. Ko, and Y. Tzeng, Phys. Lett. B 584, 269 (2004).
- [5] G. Agakishiev et al. (HADES Collaboration), Phys. Rev. Lett. 103, 132301 (2009).